
1
Predicting Diseases from Symptoms: A Multiclass Classi�cation Approach

STA 141C Final Project: Allison Peng, Jasper Dong, Eric Sun, Wilson Zhou
Introduction:
According to a report in September 2023 from the Census Bureau, within the United States, 26 million people do not have
immediate access to a health facility or cannot a�ord health insurance (Peterson Foundation, 2023). As an a�ordable solution,
machine learning within the health �eld is increasing in popularity as prediction technology continues to improve. The amount
of healthcare data available is increasing and provides a foundation for an accurate prediction model. To build a prediction model,
we are planning to use a dataset from Kaggle, called Disease Prediction usingMachine Learning.

Kaggle provided a downloadable dataset that contains 132 parameters and a singular response column. Figure 2 provides a
summary of the variable and observation counts. Each parameter represents a symptom (example: itching, rash, cough, etc.) and
there are 42 possible diseases to predict from the given symptoms. Each parameter is binary-coded to determine if the patient has
the symptom or not. The dataset contains 4692 observations.

Main Question: Can we construct a model that can forecast the disease associated with a patient’s
symptoms?

Exploratory Data Analysis pt 1: Visualization

Figure 1: Histogram of occurrences of 1 for each symptom

Figure 2: Table with counts of variables/observations Figure 3:Top 10 SymptomCounts

Number of
Symptoms/Features

132

Number of Diseases 42

Number of
Observations

4692

https://www.kaggle.com/datasets/kaushil268/disease-prediction-using-machine-learning/data


2

Looking at Figure 1, we see that there is a variety of counts for each
symptom. There are clearly certain symptoms that are more common
among patients. More speci�cally, looking at Figure 3, the top 10
symptoms among patients were fatigue, vomiting, high fever, loss of
appetite, etc. Looking at Figure 4, the distribution of the number of
diseases among patients is uniform, with the same frequency for each
disease. This information allows us to move forward with using a
supervised machine learning method because we have a large dataset with
su�cient information to train the model on.

Figure 5 shows the correlation matrix visualized with a
heatmap to detect any multicollinearity among the symptoms
data. Multicollinearity occurs when there is association between
the independent variable or dependent variable. With several
predictor variables, it is di�cult to see the speci�c correlations,
however, we see that a majority of the predictor variables are not
correlated with each other. We looked at the predictor variables
that are correlated with each other and removed 20 highly
correlated variables such as redness_of_eyes, throat_irritation,
sinus_pressure, loss_of_smell, congestion, etc. By removing
these predictor variables, we can decrease the complexity of the
model and reduce the computational power needed for our
model.

Exploratory Data Analysis pt 2: Clustering
We may also perform clustering to see how similar the symptoms are to one another. To perform clustering, we decided to use the
count for each symptom as a metric of how similar symptoms are to one another. We perform hierarchical clustering so that we
could create dendrograms based on the Euclidean distance between symptom counts, where the heights of each fusion can help
indicate similarities/dissimilarities between symptoms.

Figure 4: Counts of Diseases



3
Figure 6 shows three di�erent dendrograms based on three di�erent linkage methods: Complete, Single, and Average linkage.
From the dendrograms, we can see that there are a few symptoms that may be similar to one another, but dissimilar to the rest of
the symptoms. Especially in the dendrograms made using Single and Average linkage, those symptoms don’t fuse with the rest of
the symptoms until the �nal cluster. The dendrograms identify two or three clusters in which we can group symptoms together.

Figure 7 shows a hierarchical cluster heatmap of the symptoms in
which we can easily identify the symptoms that are
similar/dissimilar to one another. We can see that the heatmap
identi�es two main clusters. In particular, fatigue, lethargy,
yellowing_of_eyes, and abdominal_pain all form one cluster, while
the rest of the symptoms all form another cluster.

From our clustering results, we can broadly group symptoms into
about two main clusters. Symptoms that are similar to one another
would be more likely to appear together, which can help in medical
applications, such as symptom assessment in patients.

Methodology:
After exploratory data analysis, we have a better
understanding of the underlying data structure. We
know that there is su�cient symptom and disease
data to build an e�ective multiclass classi�cation
model. Figure 8 splits our methodology into three
steps: data preprocessing, random forest model, and
error calculation. We will �rst use the information
found from EDA to preprocess the data to allow for
the most e�ective model building.

a) Data Preprocessing: NA/Missing Values, Types, Label Encoding
We �rst removed the NA values and any missing values in the dataset. Then, since the disease column is in text format, we label
encoded, or convert each unique disease to an integer, the data to allow the model to classify the symptoms. We also ensured that
there was no class imbalance within the split. Class imbalance occurs when there is an imbalance of unique classes between the
test and training dataset. To ensure that both the training and test data have all 42 diseases, we used a strati�ed method during the
split.

b) Data Preprocessing: Train/Test Split
As RFs are a supervised learning method (predict given target labels), we want to split the dataset into training and test sets. The
training set is used to �t and discover the relationships in the data, whereas the test set is used for evaluation and accuracy. In our



4
initial proposal, we downloaded the test.csv associated with this Kaggle dataset and based our predictions based on that �le.
However, test.csv only contained 50 rows of unseen observations compared to our response variable (Disease) with 42 outcomes,
rendering the evaluation invalid due to the small number of observations. Instead, we opted for a better 75/25 split,
corresponding to 3690 and 1230 observations in each class, respectively.

c) Model Building: Random Forest Classi�cation
Selecting an appropriate model was done after conducting the preliminary steps of data cleaning and EDA.We ensured that the
response variable, which was in text format, was properly encoded into values interpretable by a machine. For predicting a
multiclass response variable given a generous amount of binary features, we decided to select Random Forests (RF) as our model
of choice. Compared to individual decision trees (DT) and pure bagging, many research studies have proven the credibility of
Random Forests for optimal multiclass classi�cation purposes. In order to understand why this is the case, we give a brief
summary and overview of the strengths of RFs.

Strengths Weaknesses

Random Forest - Low Variance due to ensemble
methodology

- Less prone to Over�tting
- Decorrelated trees

- Di�cult to interpret
- Computational complexity

Decision Trees - Simple Interpretability
- Simpler understanding of Gini

Impurity split

- Heavy Over�tting
- Sensitive to small changes in training

set
- High Variance

Figure 9: Cost-Bene�t Model Analysis

The goal of a model is to generalize well on unseen data. This is
done through tuning the bias/variance tradeo� such that there is
no heavy under�tting or over�tting. Random Forests compared
to DTs are a stronger method for discovering the true,
underlying relationships between the features and response.

We initialized three instances of the Random Forest classi�er.
The di�erence among the models can be attributed to the
various number of features to randomly subsample on for
splitting the decision trees. By de�nition, a Random Forest has
its max_features parameter set to sqrt (square root), which takes
the square root of the number of existing features in the dataset,
e�ectively splitting the tree by that new value of features. The other two instances had parameters set to log base 2 and none.



5
Main Results:
There are two robust methods of evaluating a random forest’s model performance: Classi�cationMatrix and Out of Bag Error.
We will look at the results of our model and decide if we need to do further hyperparameter tuning to adjust the model’s
performance.
Classi�cation Matrix:
Figure 11 displays the model predictions against the ground truth
observations in a matrix. Metrics of evaluation include precision,
recall, and F1 score. The resulting performance of all three random
forest models using max_features = sqrt, log2, none all resulted in a
100% accuracy measurement for all metrics.
Out-Of-Bag Error (OOB):
Utilizes unseen observations in n number of Bootstrapped Decision
Trees due to random sampling process. On average, ⅓ of the
observations in the original data are not selected in �tting the
individual decision trees. Error is calculated through majority vote
classi�cation through passing in an observation’s features into
aggregated individual trees that each return a class.
The OOB error rate on the Y-axis represents the mean error of each
RF instance in the legend, given the number of decision trees used. It
can be observed that the number of features to randomly split the
nodes on does not have much signi�cance on the error rate. The plot
is used to analyze the number of trees at which the OOB error is
stabilized and provides a clear graphical representation of a suitable
selection of the n_estimators hyperparameter. In this case, it seems
that a suitable number of trees could be around 20.
*Note - These results are calculated before hyperparameter tuning. In the next section, we will run an algorithm to �gure out the
best parameters for the random forest classi�cation model.

Hyperparameter Tuning
Our results from the initial random forest model led to a 100% accuracy, which is typically unlikely for a classi�cation model. As a
result, we decided to tune the model to see if the random forest parameters could be improved. If the model still remains at 100%
accuracy, likely reasons would be that the model is very e�ective for the data, or the provided data is not reliable. After further
inspection of the random forest classi�cation model, the hyperparameters we decided to tune are:

● n_estimators, max_depth, max_features, min_samples_split, min_samples_leaf, bootstrap
We used the function RandomizedSearchCV, which takes a hyperparameter distribution and randomly selects parameters to test
the model’s performance with each random combination. The function uses cross validation to �nd the best combination of
parameters and returns the parameters that give the least error for the model. Before using tuning, we used the default parameters
determined by the function. After tuning, we got the following results:

● n_estimators: 136, max_depth: 49, max_features: sqrt, min_samples_split: 6, min_samples_leaf: 2, bootstrap: True



6

Figure 13: Learning curve for pre-hyperparameter tuning (left) and post-hyperparameter (right) tuning with negative mean
squared error

Figure 13 (left and right) shows that we initially had over�tting when using the random forest classi�er. The training data had
100% accuracy and the testing data had high error. However, the pre-hyperparameter tuning model shows unusual behavior for a
random forest classi�er because the training data received 0 error with very few instances. Post-hyperparameter tuning
demonstrates an improved performance of the model as we can see the error gradually decreasing as the instances increase. Both
models lead to a 100% accuracy, however the hyperparameter tuning allowed for improved model performance.

Discussion/Outlook:
Our goal was to develop a machine learning method to classify given medical symptoms into 42 possible diseases. After data
analysis and visualization, clustering techniques, model selection and tuning, we successfully developed a random forest classi�er
that predicts given symptom data with a high accuracy. However, we ran into issues with the �nal accuracy of the model. With the
initial �tting of the random forest model using default parameters, we ended with an extremely high accuracy of 100%. This
seemed unlikely for any machine learning model, thus we looked into the possible causes. We �rst inspected the initial train/test
split of the data. The original data from Kaggle was pre-split into only 50 observations for the test data, which initially caused
over�tting of the model due to class imbalance. Thus we changed the split to be 75/25. This did not change the �nal accuracy of
100%. We then looked into the random forest model and performed hyperparameter tuning to improve the model. The results
allowed us to improve the model performance, with a more reasonable learning curve. Other possible methods of improving the
model is to obtain more observations to improve the model training. Future work could also involve applying other tree-based
models such as using XGBoost which uses a gradient boosted trees algorithm to make accurate and simple predictions.

Conclusion:
Preliminary exploration of the data set aided in visualizing and understanding the structure of the dataset. In particular, we were
able to identify correlated predictor variables that aided us in �tting our random forest model, and clustering helped in indicating
similarities and dissimilarities between symptoms. Our �tted random forest model performed exceptionally well, with high
accuracy and low error. Hyperparameter tuning of our model seemed to further improve the performance of our model, reducing
any bias that may have been present in the model before tuning. We successfully were able to answer our main question and �t a
model to predict diseases given symptoms. The use of random forest for multiclass classi�cation has large applications within the
medical �eld and can be implemented as a screening process for patients to receive an initial diagnosis.


